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TECHNICAL PUBLICATION

STATISTICAL PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

OF POWER LAW SPECTRA INFORMATION

1. INTRODUCTION

A brief summary of the maximum likelihood estimation (MLE) procedure developed for estimating

power law spectral parameters in earlier works 1,2 begins with the probability density function of the

astrophysics data set consisting of N detector responses yi, e.g., energy deposit, as

g(yi;0) = f g(Yi I E;p) O(E;O)dE, i= I,...,N ,

R

(1)

where 0 denotes the vector of spectral parameters of an assumed energy spectrum _E;O) to be estimated;

N is the number of detected events from observing range, R, of the instrument having response function, g,

and energy resolution, p. Then the corresponding likelihood function is

L(0) = g(Yi IE;p) c_(E:O)dE

i=1 [.R

(2)

and the ML estimate of 0, say 0ML, is chosen so that for any admissible value of 0, L(0MI ) > L(0) or

equivalently, loglL(0ML)I > IoglL(0)l. 3 In practice, 0ME can be obtained from equation (3) using an opti-

mization routine, such as the Nelder-Meade simplex search algorithm,* to yield

0Ml _ = minO(0) , (3)
{0}

where the objective function, O, in equation (3) is defined as O(0) = -IoglL(0)l for this minimization

algorithm so that minimizing O(0) maximizes loglL(0)] as desired, and where the integral appearing in

equation (2) and thus intrinsic to equation (3) can be very accurately evaluated by numerical methods such

as the method of Gaussian quadratures. 5 The Nelder-Mead algorithm does not require gradient information

which is a vital consideration in selecting an optimization algorithm for this application because some

energy spectra, such as the broken power law, are not differentiable everywhere.



The MLE theory generally leads to lower bounds on the statistical errors (standard deviations) of

the spectra information and the existence of such a bound, called the Cramer-Rao bound (CRB), is the

bound below which the variance of an unbiased estimator cannot fall. This implies that irrespective of the

method used to quantify the parameters from the data, there is a lower bound on the precision that cannot

be superseded. 6 In the multiparameter case, if t_ is any unbiased estimator of 0, then

/31oglg(y;O)! Ologlg(y;O)]\1-1

var(0)-> LN / _0 × ooT /A
(4)

in the sense that the difference of these two matrices is positive semidefinite. The right-hand-side matrix in

equation (4) is the CRB 7 and notationally will be referred to as I-1(0), where I(0) is frequently called the

information matrix; the notation <. > denotes "expected value"; and the superscript T stands for vector

transpose. Thus, the variance of one component of 0, say 0i, is bounded below as var(0i)> l_l(0),where

I_1(0) is the ith diagonal element of I-1(0). When 0 consists of a single spectral parameter, e.g., a simple

power law energy spectrum is assumed, the CRB is the right-hand side of the inequality

var(0) >_

(5)

Additionally, MLestimators generally possess the favorable large sample properties of consistency

(unbiased) (P1) and normality (P3).6,8.9 This Technical Publication (TP) investigates the conditions whereby

these two properties, along with efficiency which is attainment of the CRB and is referred to as property P2

in this TP, are attained for an assumed simple power law energy distribution and a broken power law

distribution, with emphasis on practical applications to instrument design and data analysis.

1.1 Simple Power Law Energy Spectrum

The simple power law suggests that the number of protons detected above an energy, E, is given by:

/._A )-t_l +1NS(> E) = M A
(6)

where E is in units TeV, a I is believed to be =2.8, and M A and E A are numbers associated with the detector's

collecting power (combination of size and observing time). In statistical terms, N S is assumed to represent

an average number of events, while the actual number to be observed on any given mission would follow

the Poisson probability distribution with mean number N S. The probability density function for galactic

cosmic ray (GCR) event energy, E, is then given by

2



0¢l-1 E -a_ for E I<E<E 2 (7)
l-a I

(PS(E) El-a1 _ L 2

over an energy range [E I, E2[ that does not depend on the parameter ct I. Because the actual incident

particle energies are never observed, but only a measure of their energy deposition from their passage

through the detector, the random variable Y is introduced to represent the detector's response, e.g., energy

deposition, of a GCR proton of incident energy, E, and its stochastic response function, g, with energy

resolution, p, which may or may not be energy independent. For specificity, a response function, g, based

on simulation studies of a thin sampling calorimeter (TSC) concept for the Advanced Cosmic-ray Compo-

sition Experiment for the Space Station (ACCESS) will he used. It has a planned 3-yr program life cycle

and is composed of a carbon target and sampling calorimeter. The TSC area is ! m 2 with a target _0.7

proton interaction lengths thick, sampled by X/Y pairs of square scintillating fibers. The fibers in the target

are 2 mm thick and provide the approximate position of the interaction. The calorimeter consists of upper

and lower parts totaling 25-radiation length- (rl-) thick lead and contains 28 X/Y pairs of 500-_m square

scintillating fibers. The upper 3-rl-thick calorimeter is sampled each 0.5 rl, and the lower part is sampled

each 1.0 rl. The total weight of the target and calorimeter is =2,600 kg, and the collecting power param-

eters, M a and E A, are estimated to be 160 and 500 TeV, respectively, implying that this TSC is expected to

observe 160 proton events above 500 TeV over its expected 3-yr life cycle.

The TSC performance predictions are based on the geometry and tracking particle physics simula-

tion program (GEANT) simulations of energy deposition for monoenergetic protons at specified energies

at 0.1, 1, 10, 100, 1,000, and 5,000 TeV for this candidate detector. The Gaussian distribution was found to

provide a reasonable description of the distribution of energy depositions at each of these incident ener-

gies. Io The mean detector response and the rms response were both found to be well approximated by a

linear function of incident energy, E, in the range of interest for this study, which is typically in the range of

20 to 5,500 TeV. Thus, the mean energy deposition, Y, for a given incident energy, E, is defined to be/J)OE

= (a + bE) and the rms response defined as tTy1 E = (C + dE), where the coefficients a, b, c, and d were

estimated from the GEANT simulation results.

Before investigating the properties of MLE for the TSC " -'mstrume :_, ,t _s instructive to consider the

concept of a zero-resolution instrument or so-called ideal def," ,,_r because it sets an upper bound on the

expected performance of any real detector of equal _-.,,,ecting power. This measurement bound is deter-

mined by the CRB for the ideal detector ,'_:,oh in turn establishes the limit in attainable precision with

which unbiased spectra inforrvo*]on can be obtained from a given science mission by any conceivable

instrument with eQ, 0_ _, _ess collecting power. Hence, it is useful in crafting realistic measurement goals
for new se ;_ ,_c missions.

An ideal detector's energy resolution, p, is equal to zero, so the standard deviation CY_E is zero for

all GCR event energies, E. Hence, the incident GCR energies are precisely known from the inverse mean

response, so that for the TSC having linear mean response gives E = (Y- a)/b, and using equation (5)

provides the CRB as the right-hand side of the inequality:

3



var(&)_
1

I+c_
I /z 2

N

(a I - I)2

'e/+_ (_ ogli- o_g,e, 0 ]
(E2E/l-EIE_') 2 J

(8)

and is asymptotically attained by the ML estimator. A key question then arises, "For what values of N is this

asymptotic property P2, as well as P! and P3, achieved by MLE?" A battery of simulations was conducted

to study this question consisting of I0,000 simulated missions for each of several values of N ranging from

50 to 52,000* events per mission and with GCR energies from the energy range of 20 to 5,500 TeV. The

ML estimate aML was obtained for each mission by solving

_l_.al _ IoglEllEl -al

01oglLl_ ! loglE 21 L 2

- _l--a 1
cqa I a 1 - 1 El al _/:52

1 N

- _-/.=_j logl Ei ] = 0
(9)

in terms of a I for the ideal detector and then also for a 40-percent resolution Gaussian detector (the TSC)

by application of equation (3). For comparison, the estimation technique referred to as the "method of

moments" is included for the ideal detector (p = 0) for the case N = 200 events and N = 52,000 events, and

consists of equating the sample mean Eto the population mean as

{ ^ . _E2-dt F2-dj
-' /

[.&l - 2 ) El -a, lz 2
(10)

and then solving the nonlinear equation (I0) in terms of &1.2 Figure 1 shows that MLE provides an unbi-

ased estimate of a I when N > 1,000, but with an ever-increasing bias as the number of events diminishes.

Notc that even though aML iS biased when N = 200 for the 40-percent resolution Gaussian TSC, its bias is

significantly ic'ss' than the bias of the method of moments estimator 41 for the ideal detector having perfect
energy resoi ution.

An analytical expression that allows one to compute the bias of _ML for the ideal detector can be

constructed by noting in equation (9) that O_ML is a function o) tl_c Ioearithm of the event energies by the
1 ,4

term  2.,IogtEil Whus,the random variable W = IoglEI is introduced having nrobabilitv density
l Y t l=

function

(Oq - I)EI t /z2_ale w(l-°tl )
f(w) = , log[ E I I< w < log[ E 21 (11)

E, E_' - E_' E 2

*The TSC used in the ACCESS concept study would detect 52,000 events on average over the energy

range of 20 to 5,500 TeV when the spectral parameter, a I, is assumed to be 2.8.
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and with mean and variance

w = log[ E l ] +
1 E_ _E282

4

-l+ot I Co

9
_V-

I E_ IE2 82 E 2_1 E2252

-1 +(_1) 2 O) 0.) 2

(12)

i N

where a = Iogl E l l-logl E 21, to= -E_' E 2 + E l E_', and, by the central limit theorem, _-_ w i is nor-

1 9

really distributed with mean/.twand variance _-cq7¢. Consequently, the probability distribution of the ML

estimator _MI. of a I using the ideal detector is obtained by solving the probability equation,

PF,
aML- 1

logl E21 E_ -aML -Iogl E I I El -aM' -tl w

<Z i .V 2I -Td_c
= _-e

--oo

(13)
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in termsof aMi J for various values of Z. Letting Z vary from -5 to 5, setting N to each of the number of

events N used in figure I, and then numerically evaluating the mean of O_ML from the probability density

function constructed from equation (13) gives the solid curve shown in figure I, indicating good agreement
with the simulation results.

An interesting observation from figure ! is that one would likely conclude, and incorrectly, that a

significant difference between the slopes of two cosmic-ray elemental species exists if their respective

number of events were significantly different from each other and at least one had fewer than 1,000 events.

This is because for two given cosmic-ray elemental species, A and B, with simple power law parameters, a

and ]3, the hypothesis H0: a- ,13= 0 (same "slopes") versus HI: a-/3_: 0 uses the test statistic aMt" -/3ME

that will inherit the bias(s) shown in figure 1 when N is <1,000. Thus, an interesting study would be to plot

the estimate of the slope parameter for each of several elemental species as a function of Ncomprising their

respective data sets to see if it resembles figure I. It should also be understood that this bias as a function

of N would be even worse had the method of moments estimation procedure been used to estimate the

spectral parameters as previously noted in figure I.

A comparison of the standard deviation of O_ML for the ideal detector with the CRB determined

from equation (8) as a function of the number of events N is depicted in figure 2 and clearly shows that aML

attains the CRB for N > 100. The standard deviation of the method of moments estimator al for the ideal

detector is also provided for comparison for N = 200 and N = 52,000, and note once again that MLE
provides a superior estimator.

StandardDeviationofMLEstimatorandCRBforIdealDetector

StandardDeviation(ideal) -a-- CRB ,t Methodof Moments(Ideal)
0.30

._o
t_

t.¢}

0.25

0.20

0.15

0.10

0.05

0
10

Figure 2.

, ,

100 1,000 10,000

NumberofEvents

100,000

Standard deviation of O_ML and the CRB as a function of N.

The comparison for N = 52,000 (rightmost markers in fig. 2) is somewhat visually misleading

because of the scale of the vertical axis. Their actual values are 0.008, 0.012, and 0.008 for aMl ., &l, and

the CRB, respectively, and the ratio 0.012 to 0.008 is 1.5 for the method of moments and 1.0 for MLE,

which is a measure of the efficiency of the estimators and again shows MLE is far superior to the method

of moments. Simply put, the improvement in measurement precision provided by MLE over the method of

6



moments can be roughly equated to doubling the collecting _ower of the instrument, because doubling the

collecting power reduces the standard deviation by I/_t2 when the CRB is attained. Furthermore,

this ratio of =1.5 remained steady as the detector resolution varied from zero to 50 percent, as shown in

figure 3. This fact, coupled with the better performance in achieving PI as previously discussed, explains

why MLE is superior to the method of moments when estimating power law spectra information.

0.016

0.012_

e o.ooa|

o,,

0.004
t_

e,-

0

Figure 3.

ML Estimatoro_t, Methodof Moments Estimator,
and CRBVersusDetector EnergyResolution.

N=-52,000Events

• Method of Moments • Maximum Likelihood CRB

I I

0 20 40 60

DetectorResolution(%)

MLE and method of moments as a function of instrument energy resolution

for the proposed TSC with Gaussian response function,

Property P3 is investigated using a frequency histogram of aMl" based on the 10,000 simulated

missions when N = 50 events per mission and shows a significant right-hand skewness (fig. 4(a)), and thus,

a clear departure from normality (Gaussian fit is illustrated as smooth curves in fig. 4(b)), while a similar

comparison for the case N = 52,000 shows aML is very normally distributed. Visual studies of the interme-

diate values of N showed the frequency histograms to be normally distributed in appearance for N> 1,000 and

is in concert with the bias study depicted in figure !.

Histogramof ML Estimate of a 1With GaussianFit,
GaussianDetector, N= 50

(a)

5O

i 4°30

"i 20
,.,. 10

0
2 2.5 3 3.5 4

ML Estimate of 13_1

Histogramof ML Estimateof a 1With GaussianFit,
GaussianDetector, N= 52,000

4.5 2.85

50

40

_ 30

_ 20

_ 10
et-

0
2.75

ML Estimateol _1
(b)

Figure 4. Frequency histograms of O_MI_ for 10,000 simulated missions with (a) N = 50

and (b) N = 52,000 events, using the TSC with its 40-percent resolution Gaussian

response function.

7



A relative frequency histogram of O_ML based on 10,000 simulated missions with N = 50 per mis-

sion using an ideal detector having zero energy resolution is shown in figure 5. Also shown is the theoreti-

cal distribution of O£ML obtained from equation (13) with parameters set to N = 50, E l = 20 TeV, E 2 = 5,500

TeV, and a I = 2.8 and illustrates the close agreement between simulation and theory.

HistogramofMLEstimateof _ WithTheoreticalDistributionWhenN= 50fortheIdealDetector

2.0

1.6

._ 1.2
ID

-_ o.8

0.4

0 I I

2 4 4.5 52.5 3 3.5

Figure 5.

_ML

Frequency histogram of O'ML based on 10,000 simulated missions with N = 50

using an ideal detector. The smooth curve is the theoretical distribution of aML

obtained from equation (13).

Solving equation (3) to obtain the ML estimate for the case where the events are measured by a real

detector having nonzero energy resolution is straightforward, and checking consistency (Pl) and normality

(P3) is easily performed. However, checking efficiency (P2) can be quite formidable because of the term

/(_'og[g(3.____';Ot,)]) =Sl[_____log[fg(vlE,p)(Ps(E;al)dE _g(ylE, p) 6Ps(E;oq)dE dy

\t LZ-," J/L.,
(14)

required to compute the CRB, coupled with the fact that the detector response function, g, in equation (14)

can be quite complicated. For example, g could be Gaussian with non-negativity constraint y > 0 and

energy-dependent resolution function, ,o(E), that in turn requires an energy-dependent normalizing coeffi-

cient. Fortunately, equation (14) can be numerically evaluated using the symmetrized form of the numeri-
cal derivative,l I

f'(x)= f(x+ h)- f(x-h) (15)
2h

to approximate the derivative in equation (14) and in conjunction with the method of Gaussian quadratures

to calculate the definite integrals. The fact that the CRB in equation (8) for the ideal detector must match

the CRB obtained from equation (14) when the detector resolution is zero (p---)0) provides a means to tune

the numerical differentiation parameter, h, and the integration parameters, e.g., the upper integration limit
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for y as well as the number of partitions used in the numerical integration in both integration variables, E

and 3; in equation (14). For the TSC instrument with a data analysis range of 20 to 5,500 TeV, setting h to

0.0001 and the upper integration limit of 3' to 35,000 GeV in place of infinity in equation (14), and using

10-point Gaussian quadratures over subintervals over both integration ranges provides the somewhat sur-

prising result of !3-decimal-place accuracy in the numerical evaluation of equation (14) when compared to

the exact value obtained from equation (8) for the ideal detector, This accuracy in the numerical evaluation

of equation (14) was independently confirmed using the numerical integration routine in MATHEMATICA '_:.

Figure 6 illustrates the convergence of the standard deviation of the ML estimator aML to the CRB

computed using equation (14) for a 40-percent resolution Gaussian detector as a function of N. The stan-

dard deviation of aML is based on a battery of 10,000 simulated missions for each value of N, where N

ranges from 50 to 52,000 events per mission. The CRB for the ideal detector is included as a reference

curve (--).

e-i

t_

0.4

0.3

0.2

0.1

0
10

eStandardDeviation(40%Gaussian) -- CFIB(40%Gaussian) ----CFIB(Ideal)

\

\\

\

I L I

1O0 1,000 100,000

NumberofEvents

Figure 6. Standard deviation of the ML estimator aML versus N for a 40-percent resolution

Gaussian detector based on 10,000 simulated missions at each value of N and the

CRB for the 40-percent Gaussian detector computed using equation (14) (--).

The CRB for the ideal detector is included as a reference curve (-- --).

When MLE is being used in the design phase of an instrument to estimate its expected performance

and if the simulations indicate that MLE does in fact provide unbiased spectra information and approxi-

mate attainment of the CRB for the science mission under study, then equation (14) can be used to evaluate

the relative merits of various instrument design parameters without performing additional simulations.

This has tremendous practical value in design parameter trade studies because equation (14) can be evalu-

ated in mere seconds, while the equivalent information from Monte Carlo simulations can take several

days. For example, because we know (from Fig. 2) that MLE attains the CRB for N_> 100 events, equation

(14) can be used to compute the family of curves shown in figure 7 that relate the precision with which a I

can be measured as a function of detector resolution and collecting power. This implies instrument design-

ers should first attempt to maximize collecting power and then improve resolution, and in that order. The

proposed TSC instrument, with its expected 52,000 events, is indicated by the square in figure 7. The reader is

referred to figure 3 for a detailed view of the CRB calculated using equation (14) for the TSC as a function

of detector energy resolution.
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CRB as a function of N for detector energy resolutions in the range 0 <p< 0.40.

The proposed TSC instrument with its expected 52,000 events is indicated by the

square, and the observing energy range was set to 20-5,500 TeV.

A detailed simulation study of the TSC-sized ideal detector, with its expected N = 52,000 events for

the observing range 20-5,500 TeV and with oq = 2.8, was conducted and _ML obtained from equation (9)

for each of I million missions (each mission detected 52,000 events), yielding a mean and standard devia-

tion value of aML to be 2.80003 and 0.007905, respectively. Constructing the probability density function

of aML from equation (13) and then numerically evaluating its mean and standard deviation gives 2.80003

and 0.007911, respectively, while the CRB calculated from equation (8) gives 0.00790998, illustrating the

remarkable agreement between simulation and theory and attainment of P2. Note that O_ML iS essentially

unbiased too and thus P! is approximately attained. Because 5.2 × 10 l° random numbers were required for

this 1 million simulated missions study, it is crucial to use a random number generator having a period

longer than 5.2 × 10 I°, such as the generator used in this study which has a period of =1018.

1.2 Broken Power Law Energy Spectrum

The broken power law energy spectrum suggests a transition from spectral index a I below the knee

location at energy E k to a steeper spectral index cc2 > a I above the knee.* The broken power law spectrum

predicts that the number of protons detected above an energy, E, is given by

*The case tr,2 <or l and where E k is referred to as the ankle can also be handled by this MLE procedure.
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NB(> E):

NS(> E)-[Ns(> Ek)- NB(> Ek) ]

for E > E k

for E < E k

(16)

where E is in units TeV, M a and E A are 160 and 500 TeV, respectively, as before for the TSC instrument,

Ns(>E) is defined in equation (6), and currently available measurements suggest that a I is =2.8, a 2 is

thought to be somewhere between 3.1 and 3.3, and E k is parameterized in the range of 100 to 300 TeV for

this study. The broken power law probability density function cB is obtained by normalizing N B over an

observing range [E I, E2[ of interest and is defined in equation (21) of appendix A.

The likelihood function of a random sample of N GCR events from the broken power law spectrum

detected by the ideal detector having perfect energy resolution, regarded as a function of the unknown

vector of parameters 0 - (at, a2., Ek), is

[ /-°Ei

L(0): A(O) N ['I
t, Ei<Ek

I Ej

E k

E I<_Ei,E.j<E 2
(17)

where the first product is over the event energies below the knee location E k and the second product is over

those event energies above E k, and they total in number to N, and A(0) is the normalizing coefficient given

in equation (22).

The Neider-Mead simplex method can then be used to obtain 0Ml" from equation (18), where the

objective function O(0) is defined as minus the log-likelihood function, so that

0ML = _lt{7[-N log A(lt)+ a'/2t,Ei<E k I°g[ E_--]/+ a'_/2-_Ej>Eklog[ EJ ]]"L'_'-k_[J
(18)

for N events detected by the ideal detector, while equation (2) must be used to construct the likelihood

function for a real detector having response function, g, and energy resolution, p, with N instrument

responses Yi • Consequently, the ML estimate 0MI" is

= rain -1o I E,p)OML g(Yi A( 0)(--E---E]

{o} t, t Ek)
dE + g(Yi IE, p) A(O) tiE

Ek

(19)

where the range of integration must be split at E k at each step in the simplex search for 0MI" -- (IX 1, f/o, Ek)ML.
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To numerically explore the properties of 0ML for the broken power law distribution, the vector of

spectral parameters is first set to 0 = (2.8, 3.3, 100 TeV) and events simulated from the energy range 20 to

5,500 TeV for each of several values of N selected so as to provide an average of 500, 1,000 ..... 5,000

events above E k as shown in table I. The notation N 2 is introduced to denote NB(>Ek), N for NB(>E 1) so

that N 1=N-N 2, and the notation N(N2) means "a total of N events, of which N 2 of them are above the

spectral knee Ek."

Table I. Number of events used in broken power law simulations for 0.5 break-size study.

N1 10,939 21,877 32,816 43,754 65,631 87,508 109,390
Nz 500 1,000 1,500 2,000 3,000 4,000 5,000

N tl,439 22,877 34,316 45,754 68,631 91,508 114,390

For each value of N in table 1, i 0,000 missions were simulated and for each of these missions, 0ML

was obtained using equation (18) for an ideal detector and equation (19) for the TSC detector having

Gaussian response function g and constant 40-percent energy resolution over the simulated energy range

of 20 to 5,500 TeV.

Figure 8 depicts the mean of the ML estimates of a 1 and _ versus the number of events N used in

the simulations and shows that when the collecting power of the detector provides >1,500 events above E k

(corresponding to third set of markers from left), property PI is essentially attained by the TSC instrument

since the relative bias is <3 percent for the 40-percent resolution Gaussian detector, and is even better for

the ideal detector having zero energy resolution.

Similarly, figure 9 illustrates the bias (recall Ek= 100 TeV in these simuations) of the ML estimate

of Ek as a function of N for the TSC instrument and the ideal detector. Note that property P! is again

roughly attained by the TSC (relative bias is <2 percent) when there are _>1,500 events above E k.

t_

11o
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3.4J
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+ c_2(40%Gaussian)
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,,1 I I I
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Figure 8. ML estimate of a I and cv2 as a function of detector collecting power.
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Figure 9. ML estimate of E k as a function of detector collecting power using a 40-percent

resolution Gaussian response function (the TSC) and the ideal detector.

The knee location E k was set to 100 TeV in these simulations.

Next, property P2 is investigated and requires the construction of the 3-by-3 information matrix

I(0). Equation (32) of appendix A provides I(0) for the ideal detector, while for a real detector with

response function, g, and energy resolution, t9, the i/-element of l(e) is, by equation (4),

lij(O)= N _/-/Iog J" g(y[E,p)(pB(E;O)dE log g(ylE, p)eB(E:O)dE
LE,

(20)

and can be accurately computed using the numerical methods discussed in the simple power law section,

and where the notation in equation (20) defines 01 - a I, 02 - a 2, and O_= E k, and where the integration

range ]E I, E21 must be split at E k for the inner three integrals.

A comparison of the CRB obtained from equation (20) for a 1 using the TSC with its 40-percent

Gaussian response function with the simulation results is shown in figure 10. Note the CRB is attained

when the number of events above the knee location is _>1,500. The case 11,439 (500) had several simulated

missions in which the MLE procedure gave an estimate 0Mr" of 0 that suggests a simple power law would

probably be an adequate explanation of the simulated events. These errant estimates were characterized as

EEl) Ek and tgr,2 are both very large relative to their assumed values of 100 TeV and 3.3 in the simulations,
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and EE2) E k and a I are both very small. While the condition EzI _ a2 is normally associated with suggest-

ing a simple power law adequately fits the data, these unlucky missions illustrate the beauty of the MLE

procedure in finding two other conditions whereby a broken power law collapses into a simple power law.

The first condition is a broken power law with E k above the range of detected events and 0_2--+ooin an effort

to explain the absence of events above E k, which is indeed just a simple power law over the range of

detected events and implied by EEl. The second condition is a broken power law with Eg below the range

of detected events and al--+0 and implied by EE2. Eliminating these errant estimates of a 1 gives the

trimmed standard deviation depicted at N = 11,439 (and N 2 = 500) in figure 10 and symbolized by a filled

circle on the plot. The CRB for the ideal detector calculated from equation (42) is also shown in figure 10

with corresponding simulation results. Additionally, the difference between the covariance matrix of the

ML estimates and l-l(O) was noted to be positive definite as each of its three eigenvalues were positive,

with two of them approximately zero for all values of N in table 1 used in the simulations.

Similar results are illustrated in figure 11 for o_z and figure 12 for E k. Trimmed estimates for these

two make little difference because of their already larger variance relative to that of a I.

StandardDeviationofMLEstimateof oqandCRB

A a (Ideal) _ CRB(Ideal) • Trimmed
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o O.O4-%

,_ 0.03r- %,,,,
IA _IL.

001 -- -- "-" --- -- -4
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Figure 10. CRB of a I using TSC (-- --) and ideal detector (_) obtained from equation (20)

versus collecting power. Standard deviations of ML estimates from simulations for

values of N in table 1 indicated by markers.
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Figure I1. CRB of o_2 using TSC (-- -- ) and ideal detector (_) obtained from equation (20)

versus collecting power. Standard deviations of ML estimates from simulations for

values of N in table 1 indicated by markers.
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Figure 12. CRB of Ek using TSC (-- --) and ideal detector (_) obtained from equation (20)

versus collecting power. Standard deviations of ML estimates from simulations for

values of N in table i indicated by markers.
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The property of asymptotic normality (P3) of 0ML is next investigated with the aid of relative

frequency histograms of the components of 0ML provided from the simulations. Figure 13 shows relative

frequency histograms of the I0,000 ML estimates of a I and a 2 for the two collecting powers that provide

11,439 (500) events and also 114,390 (5,000) events and correspond to the first and last columns of table I.

As before, the detector here is the TSC with its Gaussian response function and 40-percent energy resolu-

tion and with its collecting power adjusted through the choice of N. Note that while the histograms corre-

sponding to the larger collecting power are approximately normally distributed and well separated, those

corresponding to the smaller detector are skewed and even slightly overlapping, indicating the onset of

difficulties in detecting the broken power law parameters. Relative frequency histograms for the ideal

detector (not shown) show no overlap for the N = 11,439 (500) case and suggest that this is the approximate

boundary for fixed N where detector resolution can play a leveraging role for this set of parameters.

HistogramsofMLEstimateofo_ and(x2,forGaussianResponseFunctionWith40%Resolution.
O= (2.8, 3.3, 100TeV),EnergyRange20--5,500TeV.Averageof500and5,000 Events

AboveKnee,With11,000and110,000Below,Respectively.
10,000SimulatedMissions
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SpectralParameters_ andoc2

Figure 13. Relative frequency histograms of the ML estimate of ct I (leftmost two histograms)

for N = I !,439 (broadest of the two) and N = 114,390 (narrow histogram).

Rightmost two histograms similarly defined for _2-

Frequency histograms of the ML estimates ofE k for these two cases of N are shown in figure 14 and

once again, note that the larger sized detector has roughly attained P3 while the smaller sized detector has

not, and in fact a "bump" in the tail of the broader distribution for the smaller detector is seen, suggesting

a simple power law would likely be an adequate explanation of these particular mission results. This

situation was previously discussed and referred to as EEl.
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Histogramsof ML Estimateof Ek, for GaussianResponseFunctionWith 40% Resolution.
0 = (2.8, 3.3,100 TeV), EnergyRange 20-5,500 TeV. Averageof 500 and 5,000 Events

Above Knee, With 11,080 and110,000 Below, Respectively.
10,000 SimulatedMissions
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Figure 14. Relative frequency histograms of the ML estimates of E k for N = !!,439

(broadest of the two and with bump in right-hand tail) and N = 114,390.

Next, figure 15 shows relative frequency histograms of the I0,000 ML estimates of a I and _ when

N = 22,877, providing an average of N 2 = ],000 events above E k, and the two histograms are seen to be

clearly separated. This suggests that a detector with this collecting power and a 40-percent resolution

Gaussian response function could indeed measure the three broken power law spectral parameters when

their true values are 0 = (2.8, 3.3,100 TeV). Because the concept TSC that was studied would detect 51,576

(2,255) events on average in the energy range 20-5,500 TeV when 6 = (2.8, 3.3, 100 TeV), it is concluded

that it could measure the three spectral parameters when Ek=i00 TeV and the break-size is =0.5.

Figure 15.

Histogramof ML Estimateo! (x1 and_2 for GaussianResponseFunctionWith 40% Resolution.
0 = (2.8, 3.3,100 TeV), EnergyRange 20-5,500 TeV. Averageof 1,000 Events

AboveKnee, 21,877 Below.
10,000 SimulatedMissions
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Relative frequency histograms of ML estimates of a I and cc2 for N = 22,877 and N 2 = 1,000.
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1.3 Break-Size 0.3 Study

For this study the vector of spectral parameters is set to 0 =(2.8, 3.1,100 TeV) and events simulated

from the energy range 20-5,500 TeV for each of several values of N selected so as to provide an average of

1,000, 2,000 ..... 5,000 events above E k as shown in table 2. (Values of N 2 <1,000 produced too many

errant ML estimates 0MI _ of 0 tO be useful.)

For each value of N in table 2, 5,000 missions were simulated and for each mission, 0ML

was obtained using equation (18) for an ideal detector, and equation (19) for the TSC detector having

Gaussian response function and constant 40-percent energy resolution over the simulated energy range

20-5,500 TeV. Figure 16 shows that when the number of detected events above the knee is _>2,000, the ML

estimate of a I and c_2 is essentially unbiased and property PI is attained, while figure 17 indicates the ML

estimate of E k is still somewhat biased, even when N 2 = 2,000 (second markers from left) for the

40-percent resolution Gaussian detector, which is perhaps not surprising in light of the more difficult
estimation task for this smaller break-size case.

Table 2. Number of events used in broken power law simulations for 0.3 break-size study.

#1 19,977 39,954 59,931 79,909 99,886

N_ 1,000 2,000 3,000 4,000 5,000
N 20,977 41,954 62,931 83,909 104,886

AverageML Estimateel (x1and (x2
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Figure 16. ML estimate of ct I and _-2 as a function of detector collecting power

when the spectral break-size is 0.3 for the TSC and the ideal detector.
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Figure 17. ML estimate of E k as a function of detector collecting power using the TSC

and ideal detector when the break-size is 0.3. The actual concept TSC with its

expected N = 51,790 events is indicated by the diamond and is based on 25,000

simulated missions (others are 5,000 missions each) and suggests the marker

to its immediate right is probably a little on the high side.

Figure 18 shows the CRB of a I using the TSC detector and also the ideal detector versus the

number of detected events N. The markers represent the standard deviation of the 5,000 ML estimates of aj

based on the simulations. Note that when N 2 = ] ,000, MLE experienced several missions resulting in errant

estimates of t_ 1 in its attempt to place the knee before the data and then drive al---)0 (condition EE2),

suggesting a simple power law might be a suitable fit for those simulated missions. Trimmed estimates are

also provided in figure 18 corresponding to the cases where N 2 = 1,000 and N 2 = 2,000 and indicated by

filled circles. Also note the ideal detector with its zero-percent resolution attains the CRB for all the values

of N in table 2.

Similar comparisons between the CRB and the ML estimate of _2 and E k are shown in figures 19

and 20, respectively. Figure 20 indicates the CRB for Ek is particularly difficult to attain, even for the ideal

detector. Trimmed estimates are indicated by filled circles for the first two values of N, corresponding to an

average of i,000 and 2,000 events above Ek, respectively.
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Figure 18. CRB of aj using TSC (-- -- ) and ideal detector (_)

versus collecting power. Standard deviations of ML estimates

from simulations for values of N in table 2 indicated by markers.
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Figure 19. CRB of _c2 using TSC (-- -- ) and ideal detector (_)

versus collecting power. Standard deviations of ML estimates

from simulations for values of N in table 2 indicated by markers.
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Figure 20. CRB of E k using TSC (-- --) and ideal detector (_)

versus collecting power. Standard deviations of ML estimates

from simulations for values of N in table 2 indicated by markers.

To investigate the properties of 0ML for the proposed TSC with its 40-percent resolution Gaussian

response function, 25,000 missions were simulated with 0 = (2.8, 3. I, 100 TeV), providing 51,790 (2,470)

events on average from the observing range 20-5,500 TeV. Frequency histograms of the ML estimates of

a I and _ are shown in figure 21 for the proposed TSC and a clear separation between the histograms is

observed. A slight right-hand skewness in the ML estimates of c_2 is noted.

Relative FrequencyHistogramof ML Estimateof a 1 anda z
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Relative frequency histograms of ML estimates of a I and a 2 for the proposed TSC.
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Figure22 showstherelativefrequencyhistogramof the ML estimatesof E k using the proposed

TSC and the long, right-hand tail suggests the possibility of a few missions that resulted in errant estimates

of the form EEl. Also note the skewness and thus slight departure from normality (property P3).

Table 3 gives summary statistics of 0ML for the simulated missions. The rows labeled "theoretical

limits" under the Comments column provide the input parameters 0 used in the simulations and the CRB

obtained from equation (20), indicating that 0ML is approximately unbiased, efficient, and normally dis-

tributed so that properties P l, P2, and P3 are roughly attained by the proposed TSC for this set of spectral

parameters. Similar information for the zero-resolution ideal detector is also provided in table 3.

Relative FrequencyHistogramof ML Estimateof Ex
0 = (2.8, 3.1,100 TeV), ObservingRange:20-5,500 TeV,

GaussianResponseFunctionWith 40% Resolution.
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Relative frequency histograms of the ML estimates of E k for the proposed TSC.

Table 3. Summary statistics based on 25,000 simulated missions with 0= (2.8, 3. I, 100 TeV)

and observing range 20-5,500 TeV. for the TSC having Gaussian response function.

Resolution Ek(TeV) Mean Standard Deviation

(%) N(N2) al C_z Ek(TeV) % _2 Ek(TeV) Comments

0 100 2.80 3.10 100 0.012 0.043 10.6 Theoreticallimit

51,790 (2470)
...........................................................................................

0 2.80 3.10 101 0.012 0.048 13.7 Simulation

(25,000 missions)

40 100 2.80 3.t0 100 0.020 0.061 21.2 Theoretical limit
..........................................................................................

40 51,790 (2470) 2.80 3.11 103 0.022 0.068 24.3 Simulation
(25,000 missions)
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The difficulty of the MLE task is only partly appreciated from the preceding study of the attainment

of (or lack of) the three statistical properties--PI, P2, and P3. Figure 23 illustrates the objective function

in the vicinity of 0ML for the ideal detector for a particular simulation mission in which 0 = (2.8, 3.3,

100 TeV) and there were 114,385 events from the energy range 20-5,500 TeV of which 4,819 were above

the knee at 100 TeV, with equation (18) yielding 0ML = (2.805, 3.319, 95.16 TeV). Figure 23 shows the

objective function in the neighborhood of 0ML, keeping al fixed at 2.805 and letting o_ and E k vary in the

region around 0ML. Note the surface is well behaved and the minimum is easily found (and hence, 0ML),

and is representative of all the surfaces that were viewed when properties P1, P2, and P3 are approximately
attained.

ObjectiveFunctionVersusa 2and Ekin Vicinity of OML, With a 1Fixedat its ML Estimate2.805
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Figure 23. Objective function given by equation (I 8) for the ideal detector in the neighborhood

of 0ML for a simulated mission, keeping a I fixed at its ML estimate. There were

114,385 (4,819) events in this mission. The vertical axis has been scaled to 1.
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The alignment or tilt of the surface in figure 23 is interesting and the contour plot in figure 24

illustrates the strong correlation between a 2 and E k which is a direct consequence of the mathematical

formulation of _8 in equation (21 ) where the knee E k acts as a "hinge" connecting the two distinct parts of

the spectrum, and one can easily visualize a correlation between ct I and E k as well, whereas a I and a2.

appear to be only slightly correlated (not shown). The information matrix in equation (32) for the ideal

detector can be used to approximate the correlations for this case and gives zero between t_1 and tg_2, 0.41

between _1 and E k, and 0.64 between or.2 and E k.

ContourPlotof ObjectiveFunctionVersuset2andEx inaNeighborhood
of 0m, With _ Fixedat its MLEstimate
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Figure 24. Contour plot of the objective function for ideal detector in the neighborhood

of 0Mr" for a simulated mission, keeping a ! fixed at its ML estimate. There

were 114,385 (4,819) events in this mission.
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On theother hand, considering a much smaller ideal detector that detected 4,575 events of which

207 were above the knee on a particular simulated mission, equation (18) yields 0ME = (2.856, 3.354,

156.57 TeV) and corresponds to the broader of the two minima shown in figure 25 which reveals a much

more difficult estimation terrain in the neighborhood of 0ML and in fact, suggests the possibility of mul-

tiple optimal solutions and confidence intervals for _2 and E k that would necessarily consist of disjoint
subintervals!

Objective Function Versus (_ and Ek in Vicinity of 9ML, With a t Fixed at its ML Estimate
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Figure 25.
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Objective function for ideal detector in the neighborhood of 0ML for a simulated

mission, keeping o_I fixed at its ML estimate. This mission consisted of 4,575 (207)
events. The vertical axis has been scaled to 1.
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As observed in figures 13 and 15, when histograms of the ML estimates of a I and a 2 begin to

overlap, it clearly signals the onset of difficulties in estimating the broken power law spectral parameters

using MLE (and even more so for the method of moments since MLE was shown to be far superior in the

simple power law section of this TP). Thus, an important scientific question is, "For what values of E k will

these distributions likely begin to overlap for a particular detector?"

If the concept TSC with its 40-percent Gaussian response function is considered and with an

observing energy range of 20-5,500 TeV, then equation (20) provides the CRB for each of the three

spectral parameters as a function of E k. For example, for the case where 6 = (2.8, 3.3, Ek) and calculating

the CRB for 75 < E k < 400 TeV using equation (20), a 3(_ curve describing the approximate width of the

distribution (histogram) of the ML estimate of or.2 as a function of Et_ can be constructed (3.3 minus three

times the CRB of a 2) for values of E k in the 75--400 TeV range. Sketching this curve versus E k and noting

where it begins to cross the line t_ l = 2.8 suggests the value of Ek where the lower 3_ point of the

distribution of the ML estimate of a 2 for this concept TSC will likely begin to overlap that of a l

(fig. 26(a)). Also shown in figure 26(a) is the case when the resolution is set to 20-percent and also zero-

percent (ideal detector), along with three additional dashed curves for the situation where the TSC's

collecting power is halved. Similar curves are provided in figure 26(b) for the case where or.2 = 3.1, giving

a spectral break-size of 0.3. Obviously these figures are no substitute for statistical hypothesis testing and

furthermore do not consider the two errant estimation possibilities (EEl and EE2) that also suggest a

simple power law in favor of a broken power law, but nevertheless still provide important information.

[ a2- 3acRs)VersusEA,for TSC...B
andHalf-SizedTSC• • •

a2=3.3
3.3

3.1["__ .............. 0')o"(JdeaJi....

/ /200/0

/
"
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KneeLocation- Ek (TeV)
(a) (0.5 Break-Size)

(a_- 3ac,B)VersusEkfor TSC--'-
andHalf-SizedTSC• • •

(b)

,3 ...............................................................

a 2=3.1
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Figure 26. CRB used to estimate where the distribution of cz2 begins to cross that of cq

when (a) the spectral break-size is 0.5 and (b) the spectral break-size is 0.3.
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Note, too, that these figures represent a best-case scenario in that they are constructed using the

CRB calculated from equation (20) which of course is not quite attained in practice, especially for the

larger values of Ek and when the break-size is 0.3 as previously discussed. Thus, the actual overlap point

would occur sooner (that is, for smaller values of E k) because the variance of the ML estimator (or any

other unbiased estimator of a2) will be larger than the CRB.

Furthermore, figure 26 suggests that the 40-percent TSC is roughly equivalent to an ideal detector

(/9=0) of half its size in terms of measuring a 2, while similar studies show this 40-percent TSC to be

roughly equal to a 20-percent resolution detector of half its size in terms of estimating ct I and Ek.2 Conse-

quently, instrument designers should consider first maximizing collecting power and then improving

energy resolution, whenever possible.

It is important to realize that while raising E 2 to higher values in this analysis offers no benefit for

this proposed TSC because of its previously stated collecting power, lowering E 1does significantly benefit

the measurement precision of a I and, because of their correlation but to a lesser degree, E k. However,

lowering E t offers no benefit in the measurement precision of t_2 when using the ideal detector and virtu-

ally none when using a real detector. These results are presented in table 4 for the case 0 = (2.8, 3.3, 100

TeV) and in which E I is lowered incrementally from 20 to 1 TeV and once again illustrates the utility of the

CRB determined by equation (20). Results for the case when the break-size is reduced to 0.3 are similar.

Table 4. Effect of lowering E I on the CRB for the TSC-sized detector with 0-, 20-,

and 40-percent resolution Gaussian response function. The number

of events N 2 above E k is 2,255 for all values of E I.

(TeV)

1

5

10

15

20

N

11,468,838

632,364

181,152

86,989

51,576

CRB-Ideal

Detector(0%)

a 1 a s E,(TeV)

0.0005 0.0486 5.98

0.0024 0.0486 6.09

0.0050 0.0486 6.25

0.0081 0.0486 6.42

0.0117 0.0486 6.60

CRB-20%Gaussian
Detector

_1 a2 Ek(TeV)

0.0007 0.0578 7.89

0.0028 0.0579 8.16

0.0058 0.0581 8.56

0.0095 0.0584 9.03

0.0144 0.0586 9.58

CRB-40%Gaussian
Dete_or

al a2 Ek(TeV)

0.0009 0.0691 9.92

0.0034 0.0697 10.49

0.0073 0.0704 11.34

0.0126 0.0713 12.35

0.0199 0.0722 13.56

1.4 Analysis of Multiple Independent Data Sets

The ML theory required to estimate spectral parameters from an arbitrary number of data sets

produced by science instruments having different observing ranges, different collecting powers, and differ-

ent energy response functions is developed in this section. Application of this methodology will facilitate

the interpretation of spectral information from existing data sets produced by astrophysics missions having

different instrument characteristics and thereby permit the derivation of superior spectral information based

on the combination of data sets. Furthermore, this procedure is of significant value to future astrophysics

missions consisting of two or more detectors by allowing instrument developers to optimize each detector's

design parameters through simulation studies in order to design and build complementary detectors that

will maximize the precision with which the science objectives may be obtained.
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This extension of the methodology developed in the previous sections to multiple data sets was

motivated by such an application and is presented as an example in which two detectors, both assumed to

have Gaussian response functions but different energy resolutions and observing ranges, were modeled

separately and then in a collaborative effort to estimate the single parameter of a simple power law energy

spectrum. A succinct comparison of the benefits from using the sets in concert is measured in terms of

variance reduction of the estimator, as well as any biases resulting from poor statistics in one or both of the

individual data sets that may be reduced when considered in combination.

The ML theory necessary for application to multiple astrophysics data sets is derived here for two

independent data sets, A and B, produced by instruments having different (1) observing ranges, (2) collect-

ing powers, (3) energy response functions, and (4) energy resolutions. These two data sets will be used

together to estimate the energy spectra information and thereby benefit from the strengths of each detector,

whereas, singly, they may be inadequate for achieving the science objectives. In practice, the data sets must

be corrected for systematic errors in the energy response of the instruments in order to achieve the ultimate

accuracy of the final spectra information based on the combination of astrophysics data sets. Generaliza-

tion of this approach to more than two independent data sets then follows by induction.

To extend the ML theory to handle data sets A and B simultaneously, we begin with the probability

density function for the data set of instrument responses A = {x l,x2,-.-,xNA}, given by

gA(X/;0)= S gA(XitE'pA)(P(E;O)dE" i=l,-..,N A , (21)

RA

so that the likelihood function is

gA (Xi I E, RA ) (p(E;O)dE (22)

where 0 denotes the vector of spectral parameters of an arbitrary energy spectrum, _E;0), to be estimated;

N A is the number of detected events from observing range, R A, of instrument A having response function,

gA, and energy resolution PA, so that the corresponding objective function is

O A (0)= -tog [L A (0)] (23)

and the ML estimate 0 A, being that value of 0 for which OA(0) is a minimum, is obtained from equation

(24) using the simplex search algorithm as

0 A = minOA(0 ) . (24)
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Thelikelihoodfunctionandobjectivefunctionfor datasetB aresimilarly definedandbecause data

sets A and B are assumed independent, the likelihood function for the two sets considered simultaneously

is the product

LAB(O ) = LA(O)LB(O ) ,

so that upon taking the logarithm of each side gives the objective function as

OA_(O) = OA(O) + Oh(O)

and the vector of ML estimates based on both data sets considered simultaneously is

(25)

(26)

o m!.O  nrO (27)
let 1oI"

This procedure outlined above for two data sets is readily extended to k independent data sets so

that any one of the (2 k- 1) possible combinations of the data sets acting together provides the ML estimator

0 S obtained by applying the Nelder-Mead algorithm to equation (28) as

/
0 s=mint _ Oj(O)

{0} [j e S
(28)

where S can be any of the (2 k - i) nonvoid subsets of the set of integers { 1, 2 ..... k}.

The statistical properties of the derived ML estimator can then be studied for each simulated

scenario and, in particular, those relating to (1) bias, (2) variance, and (3) normality can be rigorously

investigated using graphical procedures and appropriate statistical techniques.*, 12.13

The CRB for the estimator of the vector of spectral parameters, 0, using two independent data sets,

A and B, is derived in appendix B and shown to be the diagonal elements of the inverse of the covariance

matrix, I, whose !O.elements are

l/j (0)= NAt °q/
log [gA(X;0) i

_0i\
× _ l°g !gA(x;O)l/+aOs/ XA(,_JlogIgl_(y:O)l_oi× _ l°gIgl_(Y;O)l/oOj/ (29)

*Some statistical test procedures depend on the outcome of the normality test for estimators.
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andwhere(I ) the notation <. > denotes "expected value" and in practice can be accurately computed using

Gaussian quadratures; (2) the partial derivatives are also numerically evaluated using equation (15); and

(3) gA(x;0) is the probability density function for data setA = {x i, i = I .... , NA}, given by equation (21) and

similarly for data set B = {Yi, J = 1..... NB}. As noted in appendix B, the CRB given by equation (29) is

readily extended to k independent data sets and provides a vital check on the performance of the derived

ML estimation procedure. If the simulations show the ML estimator of the spectral information to be

unbiased and also attains the CRB for a given spectrum-instrument combination, then this ML estimator

will be the best (minimum variance) unbiased estimator possible from combining multiple data sets for

that particular astrophysics mission scenario.

Furthermore, when this ML procedure is used in the design phase of an instrument and if the

simulations show 0ML is unbiased and attains the CRB for the science mission under consideration, then

equation (29) can subsequently be used directly to evaluate the relative merits of various instrument design

parameters (measured in terms of their impact on reducing the statistical error in measuring 0)without

performing additional simulations. An example is given in section 1.6. This is of tremendous practical

benefit because equation (29) can be evaluated in mere seconds while the equivalent information based on

Monte Carlo simulations can take several days to obtain. Extending the ML procedure to multiple data

sets, where in practice each may contain 105 to 106 events for a given science mission, is quite challenging.

Practical studies conducted in Howell 1,2 typically required >1,000 simulated missions to obtain statisti-

cally meaningful inferences about a single detector design parameter under study. Such a simulation run

would last >12 h when the broken power law spectrum was assumed (considerably less for the simple

power law), largely because of the vast number of numerical integrations required in evaluating the

objective functions and the many steps taken by the Nelder-Mead search for 0MI:

1.5 Example of Estimating a I of a Simple Power Law Using Two Data Sets

The benefits of having the additional nuclei (Z > 8) from a proposed thin sampling calorimeter

(TSC) for ACCESS at energies above the transition radiation detector (TRD) energy range was recently

investigated 14 using this methodology and serves to illustrate the application and utility of the approach.

Specifically, the value of having these calorimeter-provided nuclei in addition to the expected number of

TRD events was investigated, and the approach was to measure the benefit of including these additional

events in the estimation of the single parameter, a 1, of an assumed simple power law as compared to not

including them.

In this example the TRD geometry factor is assumed to be 7.58 m2-sr with energy response saturat-

ing at 20 TeV/n and for an observing period of 1,000 d. Furthermore, it was decided to consider the species

Ne-S with an assumed differential spectral index of 2.39, along with a calorimeter geometry factor of

5 m2-sr, providing 593 events >20 TeV/n on average for the calorimeter for a 1,000-d observing period.

Additionally, a Gaussian response function was assumed for both detectors, and the TRD was

assumed to have the same linear mean response as the calorimeter but with a constant 35-percent energy

resolution over its observing range E l to 20 TeV/n, while the TSC was assumed to have a constant resolu-

tion of 40-percent over its nonoverlapping observing range 20 to 2,000 TeV/n. This upper limit of 2,000

TeV was chosen for the calorimeter because the number of detected events >2,000 TeV is negligible for a

detector of this collecting power. Then, E I is taken to be different values ranging from 0.5 to 7 TeV as part
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of a parametricstudy in this illustration.Of course,the upperenergyboundaryof 20 TeV/n could be
extendedto a highervalueif thesaturationlimit of theTRD could be improved.

In the simulation, GCR event energies, E i, are simulated from the TRD observing range,

RT_ D = [E l, 20 TeV ], and where the number of these events, NTR D, is a function of the observing range,

geometry factor, and observing time. Then, for each of these simulated incident energies, E i, a response, x i,

is simulated according to the assumed Gaussian response function and with 35-percent energy resolution,

/gTR D. The calorimeter events are simulated in a similar manner using its defining parameters, N(.al, R(.al,

and PCal, and the Gaussian response function.

Performing the simulation once defines a so-called astrophysics "mission" and provides a single

ML estimate of a I for each instrument by solving equation (24) with 0 = a_ and all instrument character-

istics appropriately modeled through the formulation of the detector response function, g, for each detec-

tor, and then solving equation (27) when the two data sets are used in combination in the ML estimation

procedure. Notationaily, a(.al and O6FR D are the ML estimates of a 1 when the calorimeter and TRD are

considered as stand-a/one instruments, respectively, and aBoth is the ML estimate of o: 1 when the two

instruments are used in combination. The simulation is repeated for many missions, each time generating

a new set of incident energies from the assumed simple power law spectrum for each instrument and their

respective simulated energy deposits according to the detectors' response functions, estimating a I using

each data set separately and then in tandem. The statistical behavior of these estimates relative to plausible

design variation of response function parameters is then studied.

Figure 27a shows the ML estimates ai,Ri ). a(:al, and aBoth of a I for 25 simulated missions in which

E I was first set to 5 TeV/n, thus providing 5,275 events on average for the TRD. Figure 27b shows the

effect of lowering E I to 3 TeV/n, providing an average 11,660 events for the TRD, and then lowering E_ to

1 TeV/n, providing an average of 56,920 events for the TRD for 25 missions (fig. 27c). We observe that as

E 1 is lowered, thereby increasing the number of TRD events as well as extending its effective observing

range, and hence "lever arm" effect in the estimation of a t. the calorimeter has an ever-diminishing role in

its contribution to a_oth as illustrated by the (ZTRI) and al3,,th estimates nearly coinciding in figure 27c.
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Figure 27a. ML estimates of (_1 for 25 missions, with E 1 = 5 TeV (5,275 events for TRD

and 593 for calorimeter).
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Figure 27b. ML estimates of a I for 25 missions, with E I = 3 TeV (11,660 events for TRD

and 593 for calorimeter).
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Figure 27c. ML estimates of a I for 25 missions, with E I = 1 TeV (56,920 events for TRD

and 593 for calorimeter). Note that aTRI) and al3ot h are virtually indistinguishable.

32



The simulationwas run for i,000 missionsfor eachof severalvaluesof the E I parameter with

summary statistics provided in table 5 for the calorimeter acting alone, table 6 for the TRD acting alone,

and table 7 for the two data sets acting in concert to estimate a I. Tables 5 and 6 show that the calorimeter

and TRD as stand-alone instruments each provide unbiased spectral information (recall a 1 = 2.39 for this

study) and attainment of the CRB.

Table 5. Summary statistics of O_caI based on i,000 simulated missions of the calorimeter.

Calorimeter Standard

E1(TeV) E2(TeV) EventsN(E> El) Mean DeviationacaI , CRB

20 2,000 593 2.39 0.066 a 0.067 a

aTheappearancethatacaI is lessthanthe CRBis anartifactof thefinitenumberof missions
inthesimulations.

Table 6. Summary statistics of I3_I,RI_ based on 1,000 simulated missions for each value

of E I of the TRD alone (all events between E I and 20 TeV).

E1(TeV)

7.0 20

5.2 20

5.0 20

3.0 20

1.0 20

0.5 20

Saturation

(TeV) TRD Events

2,968

4,947

5,274

11,658

56,919

150,630

Mean

2.39 0.124

2.39 0.068

2.39 0.063

2.39 0.031

2.39 0.011

2.39 0.007

Standard

Deviationa,rRD CRB

0.123

0.068

0.063

0.031

0.011

0.007

Table 7. Summary statistics of Of'Both based on 1,000 simulated missions for each value

of E l of the TRD and calorimeter acting in combination.

TRD

Saturation

E, (XeV) (TeV)
7.0 20

5.2 20

5.0 20

3.0 20

1.0 20

0.5 20

CRBfor TRD andCalorimeter (Includes593 Events>20 TeV)

Calorimeter

TotalCombined Standard

E1(TeV) E2(TeV) Events Mean Deviation%o_. CRB

20 2,000 3,560 2.39 0.058a 0.059

20 2,000 5,539 2.39 0.048 0.048

20 2,000 5,866 2.39 0.045a 0.046

20 2,000 12,249 2.39 0.027a 0.028

20 2,000 57,511 2.3g 0.011 0.011

20 2,000 151,220 2.3g 0.007 0.007

aTheappearancethatOca_is slightlylessthantheCRBis anartifactof thefinitenumberof missions
in thesimulations.
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Table 7 shows that for all scenarios considered, the two data sets acting together likewise provide

an unbiased estimate of the spectral parameter, a l, and attainment of the CRB computed from

equation (29) with 0= a t to give

CRBBoth = <(NTRD c3log IgTRD(X;al)I + NCal
3a 1 ba I

(30)

as the CRB for the TRD and calorimeter acting in combination. The CRB in table 5 for the calorimeter

acting alone is obtained from equation (14) and likewise in table 6 for the TRD acting alone for the various

values of E I. Numerical evaluation of equation (30) for the different scenarios of interest presented in table

7 indicates the two detectors acting in concert do indeed attain the CRB for all values of E I and achieve-

ment of this bound, coupled with the tact that the derived ML procedure provides an unbiased estimate of

the spectral parameter, at, implies that this procedure is the best (minimum variance) unbiased estimation

technique possible.

Additionally, histograms of the 1,000-mission ML estimates for each instrument considered

separately and also in tandem show the distribution of the ML estimator to be approximately normally

distributed.

Comparing standard deviations of the different scenarios in tables 5-7 clearly shows the impor-

tance of not only the number of events or so-called "statistics" but also the observing range of the instru-

ments; i.e., the "lever arm effect." The very special case where E I = 5.2 TeV, found by trial and error, shows

the calorimeter acting alone with only 593 events but with a much greater observing range (20 TeV/n to an

average maximum event energy of 1,100 TeV/n) is effectively as good as the TRD in terms of estimating

al ((Y('al = 0.067, and (YTRD = 0.068 when E I = 5.2 TeV). For this case where E t = 5.2 TeV, the TRD had an

average of 4,947 events but with a much shorter observing range. Furthermore, the TRD's energy resolu-

tion was assumed to be 35 percent, whereas the calorimeter was assumed to be worse with a constant

40-percent energy resolution. We also note the fairly intuitive result in table 7 that (YBoth = 0.048 which is

-_0.068/_ when the calorimeter and TRD are effectively equal to each other and so O'Bothscales roughly

by "42 for this case.

Nevertheless, as E l is successively lowered, we note the overpowering impact of the TRD's

increasing number of events and growing observing range, and in fact, for E I < 1 TeV, the calorimeter's

contribution to the variance reduction of the ML estimate of O_Both is virtually nil. Thus, we see that "how

low" the TRD can observe plays a major role in assessing the value of these additional calorimeter events

in the estimation of the spectral parameter, a 1. It was concluded that since the proposed TRD would easily

observe to _<1 TeV/n, the contribution of the calorimeter's additional events would be insignificant for

measuring the spectra for Z > 8. Thus, this study resulted in an important design consideration for the

charge particle identification detector for the calorimeter and underscores the utility of this ML theory for

multiple independent data sets in the design phase of new science instruments.
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1.6 Using the CRB to Explore Instrument Design Parameters When Estimating

0= (a t, _, E k) of a Broken Power Law Using Three Data Sets

The benefit of using three independent data sets in concert to measure the spectral parameters of an

assumed broken power law proton spectrum will be investigated, and, for specificity, assume the spectral

knee location is E k = 175 TeV and the slope parameters ctl/o_ 2 below/above the knee are 2.8 and 3.2,

respectively, to give a 0.4 spectral break-size.

Next, assume the three hypothetical data sets A, B, and C were collected by instruments having

observing ranges, collecting powers, and stochastic response functions defined in table 8 so that data set A

provides information regarding only the spectral parameter al; B about ct I, c_2, and Ek; and C, only about

cz2. It is further assumed that each data set was produced by a detector having the same linear mean

response as the TSC previously introduced in section 1. I so that their response functions may be visually

compared in figure 28.

Table 8. Data sets and associated response functions, with CRB for all possible

combinations of data sets.

DataSetCombinationsand
InstrumentResponseFunction

Observing
Range(TeV)

Average
Number
ofEvents

A (Gaussian) [1, 20] 150,000
B (Gamma) [35,5,000] 44,000(2,000)*

C (BrokenGaussian) [500,10,000] 500
AB
BC

ABC

*44,000eventsabove35TeVofwhich2,000areaboveEk=175TeV.

Cramer-RaoBoundfor
_1 _ Ek(TeV)

0.0095 - -
0.0225 0.0780 34.24

- 0.1050 -
0.0087 0.0744 26.13
0.0220 0.0626 30.23
0.0087 0.0607 23.0S

In this scenario, data set A was produced by an instrument having a Gaussian response function and

with constant 40-percent energy resolution; B by an instrument having a gamma response function and

thus capable of describing a wide variety of shapes with right-hand skewness (outer curve from the right in

fig. 28); and C was measured by a detector having a "broken Gaussian" response function consisting of

two blended normal distributions (middle curve from right in fig. 28) suggested by J. Ormes, 2000, private

communication, for its closeness to the Gaussian response function but with a tail region as desired. These

latter two response functions were introduced to address the possibility that some detector response func-

tions may exhibit a right-hand skewness and might add to the difficulty of the ML estimation task. Note

that while the gamma response function used here also has a constant energy resolution of 40 percent, the

broken Gaussian actually has a 41 -percent resolution because of the added skewness while keeping the rest

of the distribution matching the Gaussian.

Furthermore, in the construction of these hypothetical data sets, the number of events in each data

set was chosen so that each data set alone provides unbiased spectra information and approximate

attainment of the CRB, 1.2 as discussed in sections I. 1 and 1.2, so that any combination of the data sets
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Figure 28. Gamma, Gaussian, and broken Gaussian detector response functions to 40-TeV proton.

should also attain the CRB. Consequently, the CRB can be calculated from equation (56) for the

combination of data sets and used directly to investigate the relative merits of instrument design param-

eters without performing the simulations. Note that while A and C provide no information about the knee

location E k, they do provide an improvement in the measurement precision of Et when they work together

with data set B.

To illustrate the utility of the CRB for multiple independent data sets regarding design parameter

studies, suppose the collecting power of instrument C is increased by a factor of 10 with the results given

in table 9 which shows the merits of collecting power on the measurement precision of the spectral param-

eters for the combinations of data sets C, BC, and ABC. While C only contains information about a 2, the

measurement precision (standard deviation) of E k reduces from 30.23 to 23.6TeV for the BC combination

and from 23.05 to 17.47 TeV for the ABC combination.

Table 9. Number of events from table 8 in data set C is increased by a factor of 10.

Instrument Combination

A (Gaussian)

B (Gamma)

C (Broken Gaussian)

AB

BC

ABC

Observing
Range (TeV)

[1, 20]

[35, 5,000]

[500, 10,000]

Average
Number

of Events

150,000

44,000 (2,000)*

5,000

*44,000eventsabove35TeVof which2,000areaboveEk=175TeV.

Cramer-Rao Boundfor

0.0095

0.0225

0.0087

0.0214

0.0086

% E, (TeV)

0.0780 34.24

0.0332

0.0744 26.13

0.030'6 2'3.60

0.0303 I 17.47
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Next,if thenumberof eventsindatasetB is reducedby a factor of 2 and those in C increased by a

factor of 10, we can once again explore the impact of various collecting power options shown in table 10.

Finally, if we keep the collecting powers the same (B reduced by a factor of 2, C increased by a factor of

10), and additionally improve the resolution of the instruments for A and C to 30- and 35-percent

resolution, respectively, we see the impact of detector energy resolution on measurement precision of the

spectral parameters, as shown in table I1.

Table 10. Number of events from table 8 in data set I3 is reduced by a factor

of 2 and those in C increased by a factor of 10.

InstrumentCombination
Observing

Range(TeV)

Average
Number
of Events

Cramer-RaoBoundfor

O_ 1

A (Gaussian) [1, 20] 150,000 0.0095

B (Gamma) [35, 5,000] 22,000(1,000)* 0.0318

C (Broken GaussJan) [500, 10,000] 5,000 -
AB 0.0091

BC 0.0302

ABC 0.0090

*22,000eventsabove35TeVof which2,000areaboveEk=175TeV.

_ E, (TeV)

0.1104 48.42

0.0332

0.1048 35.86

0.0318 31.81

0.0317 22.36

Table 11. Number of events from table 8 in data set B is reduced by a factor

of 2 and those in C increased by a factor of 10, resolution of A

improved to 30 percent and C to 35 percent.

Instrument Combination
Observing
Range(TeV)

Average
Number

ot Events

150,000A (Gaussian, 30%) [1,20]

B (Gamma, 40%) [35, 5,000] 22,000 (1,000)*

C (Broken Gaussian,35%) [500, 10,000] 5,000

AB

BC

ABC

"22,000eventsabove35TeVofwhich2,000areaboveEk=175TeV.

Cramer-RaoBoundfor

0.0083 - -

0.0318 0.1104 48.42

- 0.0321 -

0.0080 0.1047 35.58

0.0301 0.0309 31.70

0.0080 0.0307 22.02

Obviously, the number of possible parametric studies are numerous, but the preceding sample

investigation illustrates the utility of this procedure and the derived CRB for multiple independent data sets

vhen considering the design of new, complementary detectors. Furthermore, the CRB values in tables 8-

I1 were computed using equation (56) in <1 min, whereas the equivalent information based on Monte

Carlo simulations ,_,_uld take >1 wk to obtain. However, when the CRB is not attained in practice, simula-

tions must be used to estimate the real performance benefits when using multiple independent data sets.
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2. CONCLUSIONS

This TP investigates the statistical properties of the ML estimator of the single parameter of a

simple power law energy spectrum and presents the conditions under which this estimator attains the three

desirable properties: (PI) consistency, (P'2) efficiency, and (P3) asymptotic normality. A comparison with

the estimation procedure called the method of moments is also included and shows the ML estimator to be

far superior in terms of these three desirable properties.

The properties of the ML estimator of the broken power law energy spectral parameters and the

conditions under which PI, P'2, and P3 are attained are also investigated under a wide range of parametric

values. A crucial result of this research and necessity for investigating 1'2 is the derivation of a closed-form

expression for the CRB of the broken power law distribution presented in appendix A. Another critical

result is the calculation of the CRB using equation (20) for the broken power law distribution and equation

(14) for the simple power law distribution when events are measured by a real detector having response

function, g, and energy resolution, p. While this study considered an instrument having a Gaussian

response function and with resolutions ranging from zero to 50 percent, any response function, g, can be

used in equations (14) and (20) to calculate the CRB, such as various skewed distributions and others

having nonconstant energy resolution as illustrated in section 1.6 and also discussed in references 1 and 2.

Much insight into the estimation task of power law spectra information can be gleaned from the CRB as

illustrated in this TP, as well as the fact that it provides a stopping rule in the search for the best (minimum

variance) unbiased estimator of power law spectra information.

Simulations were conducted in parallel with these analytical results and the CRB played an unex-

pected but valuable oversight role by signaling errors in the simulation code when the simulations occa-

sionally produced the impossible result of the ML estimator having a standard deviation smaller than the

CRB. Furthermore, it is likely that these simulation errors, while small in practical terms, would have gone

unnoticed if not for having the CRB available for comparison.

Additionally, several detector design parameter studies are included in this research and it is hoped

that those designing instruments to measure power law spectra information will benefit from these studies.

Additionally, this analysis should benefit those wishing to apply these techniques to the estimation of

spectra information from existing data sets, which requires a modified likelihood function to handle the

realistic situation in which the range of integration IE l, E2I in the objective function is unknown, and is

discussed in detail with examples in references ! and 2.

The MLE procedure and companion analytical techniques to estimate spectra information from an

arbitrary number of astrophysics data sets produced by vastly different science instruments is presented

and demonstrates how complementary astrophysics missions can work in concert to achieve scie,,v_ goals.

Additionally, the CRB for an unbiased estimator of spectra information based on the _- .,,umple indepen-

dent data sets is derived in appendix B and provides a means of assessing the ,tccuracy of different estima-

tion techniques and, furthermore, provides a stopping rule in rh_ J,_,arch for estimation methodologies

when the CRB is attained in practice. Several example_ !'.:ustrating this ML method and utility of the CRB

for multiple independent data sets are inchr,_2.

38



APPENDIX A--CLOSED-FORM EXPRESSION FOR THE CRAMER-RAO BOUND

OF THE BROKEN POWER LAW

A closed-form expression for the information matrix I(0) of the broken power law distribution is

derived, and the inverse l-l(0) is defined as the CRB. This bound corresponds to the so-called ideal

cosmic-ray detector having perfect energy resolution and has tremendous utility because it sets the limit on

the precision with which any conceivable detector of equal collecting power can measure the three broken

power law spectral parameters. Furthermore, it provides a means to tune the integration and differentiation

parameters in the numerical algorithm for evaluating equation (20) for real detectors because the CRB

determined from equation (42) is exact and must equal equation (20) when the detector's energy resolution

p--)0.

A.1 Derivation

The broken power law probability density function for GCR event energy, E, is given by

0B(E;0) =

_(
a(o)(-_z.J for E 1 <_E < E k

Z(O)i--E-_k) for Ek < E <_E 2

(31)

over an energy range [El, E2] that does not depend on the spectral parameters 0 = (oq, a.2, Ek), and the

normalizing coefficient A(0) is

Starting with

A(O) = (a t - l)(a 2 - 1) (32)

I ( E ,_l-al {E _1--_2]
Ek al-O_2 +(o_9-I)[ "_1 | -(a I - 1)[-_-2-|

- Ek; t:k}

E2

= j ¢_ (E;O)dEi

El

E_

I
Et

elOglq_B(E:0) IdE +

E2

elOglCu( E:O)ld E

E_.
(33)
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andwriting logl@/_(E; 0)1 as

loglCB( E;0)I = log, A(0)I-oq lo_-_--E/61-a t Io_TE _62

i- /

LLkJ LLkJ

where 51 and 62 are indicator functions defined in equation (37), gives

(34)

1= _exp[log[A(O)l-6tllogIE]_l-OQlogE-_kl_2]dE
E, LEkJ

q-

E_.

Taking the derivative of equation (35) with respect to a I and cv.2 is straightforward and gives

(35)

O=\/_I°gI(PB(E;O)II_ /= <A; - LE_I )

(36)

where <. > denotes mathematical expectation and the abbreviations

, 3log A(0) , c31og A(0) , 5! -= , 62 =
A t= _a I ,A 2= _a 2 ,L E=log tZkJ O, E>E k ,

E < E k (37)
E> E k

are introduced. Taking the derivative of equation (35) with respect to E k and using Leibnitz's rule (see

Professor Bierens' "check" of equation (39) in section A.2):

_a I f(x'a)dx = I_aa f (x,a)dx+ f(q,a)_a- f(p,a)act

p p

(38)

and the continuity of CR at E k gives
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0_ k 0log[ q_B(E;0)I0B ( E;0)dE + (_B(Ek ;0) - 0 +

EI OEk

:z 0log[ q_B(E;0) I0B (E:0)dE + 0 - (PB(Ek ;0)

Ek OEk

=I_I°g[(gB(E;O)]I= ( ' + a2 _2/ Ak =\. _ / A t, + aJ61Ek Ek / where ' 31oglA(0)lbEk (39)

and the three partial derivatives of loglA(0)l defined in equations (37) and (39) are

t

A 1 =

//{ + ,ogre7/(-I+a2) _ El tE_) LF_kA)

(-t +<_,)(-_+_)E,CE_j + 1/EkJ _ Ek

(-1 +_l -E2 +/E/_ Ek +(E2 - a2E2)l°g
T

A 2 = (40)

.-I-

Ak=

As a check, the expectation of the partial derivatives of q_8 with respect to the parameters czI, ,o_2,

and E k defined in equations (36) and (39) are indeed seen to be zero when the derivatives A 1, A 2, and A k in

equation (40) are used in conjunction with the expected value terms defined in equation (41), along with

(4) = Pr{E < E k} and (S__)= l-Pr{ E < E_ }, and
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(41)

Next,thenineelementsof thesymmetricinformationmatrix I(0) areconstructedasfollows:

' I122 = A'22- 2L_'Azg2 + L2_2

'33= A'k2 +(_' )21_'_Ek j +(i2'212_2+[Ek ) 2A'k(a']_'+_Ekj 2A'k[O_2/_2_,Ekj +_a'O_2"_'_/_ tP,v2)

112=12t= A A 2+ 1 - LEAzg 1- LEAI_ 2

(42)

where expectation terms in equation (42) not previously evaluated are (6i62)= 0 and

A(") (E2_°_2(2[_Eg+¢Egl x2_C t,--_k) E21°_[E21-(-I )2E2(I°_E211]"

(43)

42



Finally, the matrix elements defined in equation (42) are multiplied by N to give the information

matrix I(0). It is interesting to note that I(0) contains the intuitive terms N<61> and N<_>, which are the

expected number of events below and above the spectricai knee E_, respectively.

This completes the derivation of the closed-form expression of the information matrix I(0) corre-

sponding to the so-called ideal detector having perfect energy resolution. Its inverse 1-1 (0) gives the CRB,

and the square root of the diagonal elements of I-I(0) is the CRB for the three spectral parameters. In

practice, one should verify that the difference of the covariance matrix C and the CRB is positive definite

by checking that the eigenvalues of the matrix [C- I-J(0)] are all positive. If the eigenvalues are zero, the

CRB has been reached and the ML estimator has attained property P2 (efficiency) by achieving the CRB.

The computer program MATHEMATICA 15was used to provide equations (40)-(43) and performed

the important check

/

0: (A'k+aJ6tek+  2Ek62//

(44)

that confirms the correctness of the terms leading to the construction of the information matrix I(0). Fur-

thermore, a format feature of MATHEMATICA called Fortran Form was used to write these equations in

FORTRAN source code for implementation in the overall simulation program and thereby eliminated the

possibility of introducing human error in transferring the equations into the computer program.

A.2 Check on Equation (39) by Professor Bierens 16

"Equation (39) is correct if (38) is correct, which in its turn is the case if (38) holds for fixed p and

q. In the latter case (38) states that the derivative operator d/da can be moved inside the integral, which

requires the application of the dominated convergence theorem. The conditions for the latter are:

1. For each x in [P,ql, j(x,a) is differentiable in a, possibly except for x in a subset with Lebesgue

measure zero.

2. There exists a function b(x,a), say, with finite integral over Ip,ql such that sup{nlf(x,a+l/n) -flx,a)l

< b(x,a) and sup{nlflx.a-l/n) -flx,a)l < b(x,a), where the "sup" is taken over all n>O.

In (39) you have applied (38) for the cases q = a and p fixed, and q fixed and p = a, so that (39) is

correct if the conditions i and 2 hold for a = q and a = p. In the case q = a and p fixed, the Iog-density.](x,q)

is differentiable in q for x < q, but not for x = q. Similarly, in the case q fixed and p = a,flx,p) is differen-

tiable in p forx > p but not for x = p. Thus condition ! holds, with {p,q} the subset with Lebesgue measure

zero. Moreover, since the left and right partial derivatives offlx,a) to "a" are bounded, condition 2 holds as

well. Consequently, (39) is correct."
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APPENDIX B--CRAMER-RAO BOUND FOR MULTIPLE INDEPENDENT DATA SETS

Derivation of the CRB using two independent data sets, A and B, considered simultaneously to

estimate a single spectral parameter, 0, follow along the lines of the proof of the CR inequality in Hogg and

Craig 17 for a single data set. Starting with the probability density function for detector A's response (e.g.,

energy deposit)data set A= {xi[ i= I,-.-,NA} as

ga(xi;O)= _ gA(XilE, PA)dP(E;0)dE, i=l,...,N A

RA

(45)

and similarly for data set B = {yj j = I,...,NB} as

gB(Yj ;0)= _ gB(yjlE,ps )dp(E;O)dE, j=I,'",N B ,

RB

(46)

and because

1 = f gA(Xi;O)dr_ i, i= 1,... N A (47)

RA

and also for data set B, their product gives the joint probability density function of the two data sets

considered simultaneously. Assuming the derivative operator d/dO can be moved inside the integral,

differentiating their product with respect to 0 gives

[ 3 log IgA(Xi;O)l gA(xi;O)dxi + f D log [gB(Yj;O)[0
30 J 30 gB(Yj;O)dyj (48)J

RA R B

Next, define the random variable, Z, as

N A
_, D IoglgA(Xi;O)lZ=
/_.., DO

i=1

D log IgB(Yj:O)l
+ D0

j=l

(49)
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It follows from equation(48) that the meanof Z is zero, or using expected value notation, <Z> = 0.

Moreover, Z is the sum of (N A + NB) mutually stochastically independent random variables, each with

mean zero and consequently with variance*

(50)

Next, assume there exists an unbiased statistic, U, of the parameter 0 that is a function of the (N A + Na)

instrument responses comprising data sets A and B considered acting together, so that

U = u(x_,..., XNA, yl,..',yNB ) and hence

0= J-'" j /¢(XI,"',XNA,YI,"',yN B)gA(XI:_O)'''gA(XNA;O)gB(y I;0)

RB RA

• " gB (YNB ;0) dxl,'", dr N A' dyl "'" dYNB

and differentiating both sides with respect to 0 gives

,.., XNA,Y[,-.., Y )[N.___I
, _ N B

]= I ... I tt(xl l OgA(Xi;O)

RB RA gA(Xi;O) O0

N B l Og B (_) ; 0 ) ]

+ Z gB(v];O ) c)O J XgA(XI;O)'"gA(XNA ;O)gB(YI:O)j=l -.

'"gB(YNB ;0)dx I ...dXNA dyf ""dYNB

INi_=l O[Og[gA<xi;O>]

R B R A

N. Olog[g_(yj;O)]] x gA (xl;O)'"gA(XNA ;O)gB(s1:0)+ _" bO
j=l

:O)d  t...dXN dyl

(51)

(52)

*The expectation of the cross-product terms is zero because of independence.
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This shows that <U Z> = i, and, because <U Z> = <U><Z> + to- U o-z, where ris the correlation coefficient
of U and Z, we have

! = O×O+ro-u_r Z
1

or z'=_ (53)

o-Uo-Z

Since r 2 < 1, it follows that o-2 >_ I/o -2 and therefore

cr b > I (54)

I
which establishes the CRB for two independent data sets, A and B, for an unbiased estimator of the single

spectral parameter of an energy spectrum. This bound readily extends to k independent data sets by induc-

tion and furthermore confirms that "it always pays to use additional data sets" because of the additional

variance reduction and hence improvements in measurement precision, as long as the additional data sets

provide unbiased information.

The above derivation generalizes to the case where 0 is a vector of spectral parameters by the

additivity of information matrices 18 so that the CRB for the individual parameters comprising 0are the

diagonal elements of the inverse of the information matrix, I, having ij-elements:

Iij=NA( Ol°g[gA(x;O)]Ol°glgA(x;O)]l_Oi -_j / +NB//01°g[gB(y;O)i01°g[gB(y;O)l/00i _-Oj /

and, as in the single parameter case, equation (55) is readily extended to k independent data sets.

(55)
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Fortheinterestingcasewhereadetector does not observe events in an energy range represented by

one or more of the spectral parameters, the partial derivatives with respect to those parameters are zero. For

example, suppose detector A observes only events below the spectral knee, detector C only observes events

above the knee, and detector B observes both above and below the knee. Then the matrix to be inverted to

obtain the CRB for an unbiased estimator of 0 = (a I , a 2, E k) is

lij = N A 0 0 0

0 0 0

_) log [g_ (y;0)] c3log [gB(y:0) ].)+ NB 30 i OOj

+N C

0 0

o j /
0 0

-

0 .

0

(56)

where the notation in the second term of the right-hand side of equation (56) defines 01 = a I, 02 =u.2, and

03 --E k as before and where the integration range for this term must be split at E k in its numerical evaluation.

An example using equation (56) is provided in section 1.6 of this TP.
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However. the cflort in calculating the CRB is very worthwhile because it provides the necessary means to compare the efl_iciency of competing

estimation techniques and. furthermore, provides a stopping rule in fhe search |or the best unbiased estimator. Consequently. the CRB tot both the

simple and broken power law energy' spectra are derived herein and the conditions under which they are attained in practice are investigated.

The ML technique is then extended to estimate spectra information from an arbitrary number ot astrophysics data sets produced by vastly'

diflerent science instruments. This theory and its successful implementation will |acilitate tile interpretation of spectral inlonnation from multiple

astrophysics missions and thereby permit the derivation of superior spectral parameter estimates based _m the combination ot data sets,
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